The influence of the serotonin transporter gene 5-HTTLPR polymorphism on suicidal behaviors: a meta-analysis

Giuseppe Fanelli¹, Alessandro Serretti^{1*}

¹Department of Biomedical and NeuroMotor Sciences - University of Bologna, Bologna, Italy (*correspondence to: alessandro.serretti@unibo.it)

P.326

BACKGROUND and AIM

BACKGROUND: Suicidal Behavior (SB) is the second leading cause of death among youth worldwide and the tenth among all age groups. Inherited genetic differences have a role in suicidality, as shown by family, adoption and twin studies, with heritability ranging from 30 to 55%. The serotonergic system and the *SLC6A4 5-HTTLPR* gene variant have been largely investigated for association with SB, with controversial results.

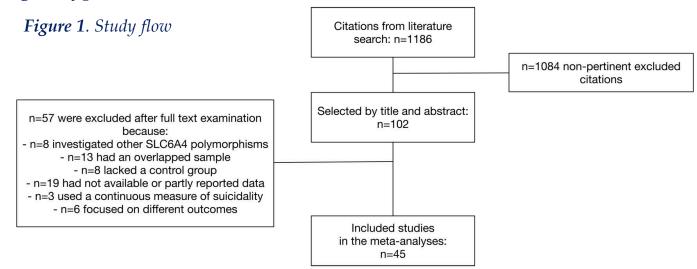
Over the years, six meta-analytic studies have attempted to summarize previous evidence: four of them showed significant associations, though with some variability in the results [2-5]. Lin and Tsai showed lack of association between the *5-HTTLPR* polymorphism and Suicidal Behavior, but a significant effect on Violent Suicide. Likewise, Clayden et al. only found an association with Attempted Suicide and not with the whole Suicidal Behavior.

In this work, we sought to determine whether the results of previous meta-analyses were confirmed or modified subsequent to the inclusion of more recent literature data.

METHODS

LITERATURE SEARCH: Medline/PubMed, Web of Science, Scopus and PsycINFO databases were searched for papers published until **July 2018**. The search terms were related to the gene and its polymorphism as well as to the Suicidal Behavior phenotypes. The reference lists of the selected articles were inspected to retrieve additional papers not indexed by the scientific literature databases.

STATISTICAL ANALYSES: For **primary meta-analyses**, data were entered and analyzed through RevMan v5.3, using a Mantel-Haenszel random effects framework. We also performed separate **sensitivity**


RESULTS

- 1) 45 pertinent case-control studies were identified (15,341 subjects).
- 2) No association was found between the low-expressing alleles or genotypes (S+L_G alleles or S' carrier genotypes) and SB in the **general primary analyses**, which include all the studies we previously selected (*allele-wise analysis: OR=0.97, C.I. 0.88-1.06, p=.45; genotype-wise analysis: OR=1, C.I. 0.87-1.14, p=.99 [images not shown*].
- 3) The **sensitivity analyses** did not show any significant effect of the 5-HTTLPR polymorphism either when we considered only studies which used a triallelic genotyping approach or homogeneous data for ethnicity, gender, SCZ spectrum and mood disorder diagnoses. An effect of the low-expressing alleles (S+L_G alleles) on SB was found in a subpopulation of substance abusers, although this result was not confirmed after the exclusion of healthy subjects from the control group.
- 4) The low-expressing alleles or genotypes (S+L_G alleles or S' carrier genotypes) were associated with an increase in the risk of Violent Suicide, mainly in the **Violent Suicide Attempt** subgroup (allele-wise analysis: OR=1.44, C.I. 1.17-1.78, p=.0007 [Fig. 2]; genotype-wise analysis: OR=2.49, C.I. 1.45-4.29, p=.001 [image not shown]).

DISCUSSION and CONCLUSION

- Some clinical, personality and sociodemographic features may allow to distinguish suicide attempters from completers [6];
- The effect of the low-expressing alleles and genotypes is more evident where the **psychopathological dimension**, underlying the SB, is more substantial and robust, as it happens for **Suicide Attempters**. Conversely, negative socio-economic aspects or physical health problems might play a predominant causal role in the Completed Suicide subgroup.
- \rightarrow Our findings contribute to clarify the contrasting previous evidence

meta-analyses considering different phenotypes of Suicidal Behavior (e.g. Violent and non-Violent Suicide) and subjects homogeneous for a triallelic genotyping approach, ethnicity, gender, and three major psychiatric diagnostic categories (SCZ spectrum, mood disorders and substance abuse disorders) firstly by considering healthy subjects among the control group and then excluding them from the analyses. For the **allele-wise** analyses, the L_G allele was matched with the S allele and the L_A allele was matched with the L allele. For the **genotype-wise** analyses, we tested the comparison of the S' carrier genotypes (SS, SL) (low expression) versus the LL genotype (high expression), assuming that the S allele had a dominant effect on the L allele, as previously reported in the literature. For studies examining the 5-*HTTLPR* as a triallelic polymorphism, we included the SS, SL, SL_G, SL_A, L_GL_A, L_GL_G in the S' carrier genotypes group and the L_AL_A was combined with the LL genotype.

by suggesting an association of the 5-HTTLPR and Violent SB. Environmental factors and epigenetic mechanisms may act to further increase the level of complexity.

LIMITATIONS: diversity in the genotyping methods; controversial definitions of SB; partial or not shown data for some studies.

	S+L	g	L+La		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
7.2.1 Completed Sui	cide						
Bondy 2000	67	158	39	168	9.1%	2.44 [1.51, 3.93]	
Helbecque 2006	42	98	70	158	8.6%	0.94 [0.57, 1.57]	
Hranilovic 2003	91	330	177	534	12.1%	0.77 [0.57, 1.04]	
Linkowska 2010	54	99	78	135	8.4%	0.88 [0.52, 1.48]	
Rahikainen 2017	142	415	132	423	12.4%		
Subtotal (95% CI)		1100		1418	50.5%	1.11 [0.77, 1.60]	
Total events	396		496				
Heterogeneity: Tau ² =	= 0.13; Cł	$ni^2 = 12$	7.06, df =	= 4 (P =	0.002);	$l^2 = 77\%$	
Test for overall effect	Z = 0.55	5 (P = 0)).58)				
7.2.2 Attempted Suid	cide						
Bayle 2003	22	283	14	295	6.2%	1.69 [0.85, 3.38]	
Bellivier 2000	29	299	21	391	7.5%	1.89 [1.06, 3.39]	
Courtet 2001	57	175	45	205	9.4%	1.72 [1.09, 2.71]	
Rujescu 2001	34	176	52	280	9.0%	1.05 [0.65, 1.70]	
Segal 2006	47	182	41	210	9.1%	1.44 [0.89, 2.31]	
Wang 2009	35	233	29	231	8.3%		
Subtotal (95% CI)		1348		1612	49.5%	1.44 [1.17, 1.78]	•
Total events	224		202				
Heterogeneity: Tau ² =	= 0.00; Cł	$ni^2 = 3.$	62, df =	5 (P =	0.61); I ² =	= 0%	
Test for overall effect	Z = 3.38	B(P = 0)	0.0007)				
Total (95% CI)		2448		3030	100.0%	1.27 [1.01, 1.58]	•
Total events	620		698				
Heterogeneity: Tau ² =	= 0.08; Cł	ni ² = 2!	5.72, df =	= 10 (P	= 0.004)	$ 1^2 = 61\%$	0.2 0.5 1 2
Test for overall effect							0.2 0.5 I 2 Risk for L+La Risk for S+Lg
Test for subgroup dif	ferences	Chi ² -	1 47 df	-1(P)	- 0 23) 1	$^{2} - 32.0\%$	RISK IUI L+La RISK IUI S+Lg

Figure 2. Forest plot for the effect of the 5-HTTLPR polymorphism on Violent Suicidal Behavior, pooling $S+L_G$ alleles versus $L+L_A$ alleles (allele-wise analysis). Subjects with a history of Violent Suicide are compared with non-suicidal patients and healthy controls.

REFERENCES

- [1]. Antypa, N., A. Serretti, and D. Rujescu, Serotonergic genes and suicide: a systematic review. Eur Neuropsychopharmacol, 2013. 23(10): p. 1125-42.
- [2]. Anguelova, M., C. Benkelfat, and G. Turecki, A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: II. Suicidal behavior. Mol Psychiatry, 2003. 8(7): p. 646-53.
- [3]. Li, D. and L. He, Meta-analysis supports association between serotonin transporter (5-HTT) and suicidal behavior. Mol Psychiatry, 2007. 12(1): p. 47-54.
- [4]. Schild, A.H., et al., Genetic association studies between SNPs and suicidal behavior: a meta-analytical field synopsis. Prog Neuropsychopharmacol Biol Psychiatry, 2013. 46: p. 36-42.
- [5]. de Medeiros Alves, V., et al., Genetic Polymorphisms Might Predict Suicide Attempts in Mental Disorder Patients: A Systematic Review And Meta-Analysis. CNS & Neurological Disorders Drug Targets- CNS & Neurological Disorders), 2015. 14(7): p. 820-827.
- [6]. Parra Uribe, I., Blasco-Fontecilla, H., Garcia-Pares, G., Giro Batalla, M., Llorens Capdevila, M., Cebria Meca, A., de Leon-Martinez, V., Perez-Sola, V., Palao Vidal, D.J., 2013. Attempted and completed suicide: not what we expected? J Affect Disord 150, 840-846.

ACKNOWLEDGEMENT

We thank The Network on Suicide Research and Prevention of the European College of Neuropsychopharmacology (ECNP) for comments and critical review to this work.

NO CONFLICT OF INTEREST