Nicotine deprivation and craving in smokers are related to inhibitory control in smoking-related contexts Kräplin, A., Bühringer, G., Goschke, T.

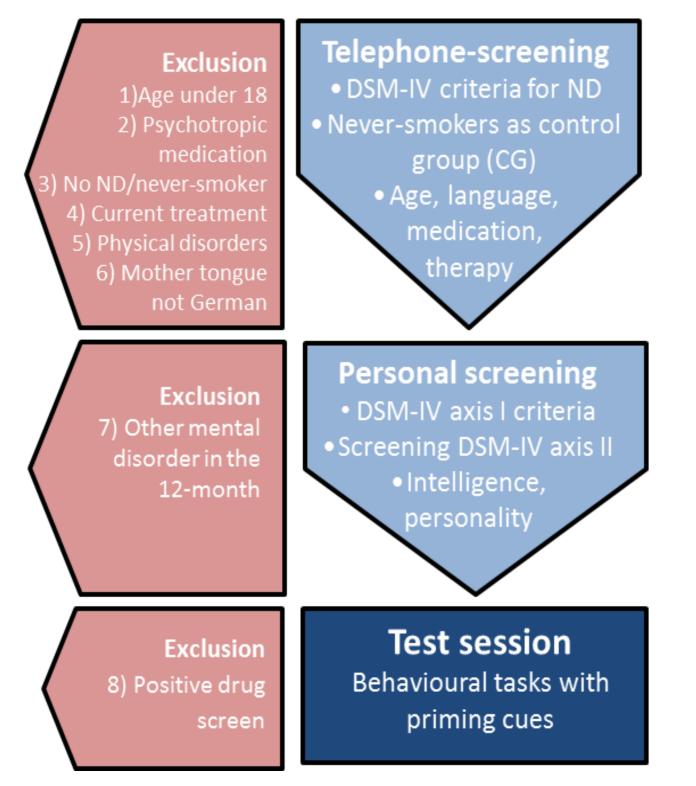
Department of Psychology, Technische Universität Dresden

BACKGROUND

***** Theory

- Dysfunctional inhibitory control is one core mechanism in nicotine dependence (ND)¹
- Furthermore, aberrant reward-based learning results in increased salience of smoking-related cues in ND²
- Nicotine deprivation and craving are positively related to this preferential cognitive processing of smoking-

Hypotheses


- 1. Smoking-related context cues are processed with high priority in ND, resulting in specifically impaired inhibitory control in ND compared to controls after smoking-related compared to neutral cues
- 2. Increased inhibitory control impairments after smoking-related compared to neutral cues in ND are positively related to nicotine deprivation and craving

VOLITION AND .: COGNITIVE CONTROL

METHODS

Design and Screening

Sample

	Nicotine	Control		
	Dependence (ND)	group (CG)	Test	
	27	33		
	MW (SD) n (%)	MW (SD) n (%)		
lge	26.5 (8.0)	25.7 (7.1)	n.s.	
1ale	8 (29.6%)	18 (54.6%)	χ² =3.75, p= 0.05	
ntelligence uotient	100.9 (8.3)	102.3 (6.3)	n.s.	
SM-IV riteria ND	4.6 (1.3)	-	-	

***** Measures

Go-nogo task⁴

- 300 trials, 20% nogo
- Letters presented for 150 ms
- Pictures presented within inter-stimulus interval (1250 -1750ms)

Nicotine deprivation

• Minutes since last cigarette before test session

Smoking vs. neutral pictures

 International Affective Picture System⁵ and noncopyrighted Internet sources

- 77 color photographs for each condition (72 dpi)
- Selected at random
- Presented for 500 ms

Craving

→ [. .

W

NoGo

• Sum score of ratings from 0 to 10 before, during and after test session

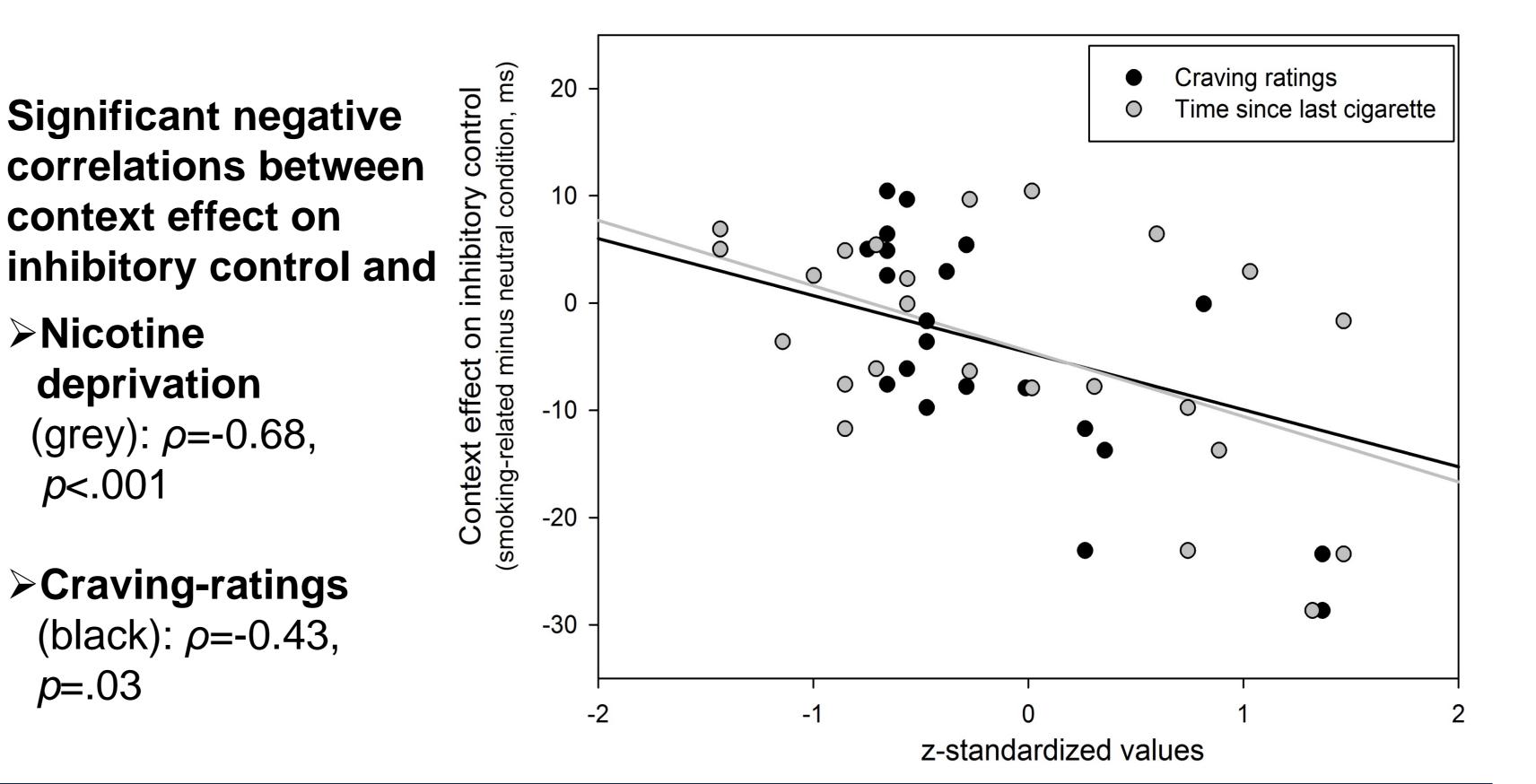
Hypothesis 1

• Regression analysis

Outcome: Context effect on inhibitory control as difference in IES [inverse] efficiency score = RT/(1-ER)] of smoking-related minus neutral condition

Inhibitory control IES go-nogo task	ND M (SD)	CG M (SD)	
Smoking-related condition	333.71 (26.36)	334.82 (35.44)	↑ IES (ms) = \downarrow Inhibitory control
Neutral condition	337.82 (24.39)	333.66 (37.58)	

Predictors: Group (ND vs. CG) and inhibitory performance in the neutral condition (baseline-correction)


Context effect on inhibitory control	Beta	Standard error	t	p-value	95% confidence interval
Group	-5.10	2.49	-2.05	0.04	-10.09– -0.11
Inhibitory control neutral condition	-0.05	0.04	-1.12	0.27	-0.12-0.04

- > Compared to CG, significantly lower IES in ND after smokingrelated compared to neutral cues
- > Effect driven by reaction times

Hypothesis 2

Spearman correlation

Between the context effect on inhibitory control (IES smoking-related minus neutral condition) and nicotine deprivation and craving in ND

Conclusions

• Smoking-related cues may trigger emotional (positive affect)⁶, attentional (bias)⁷ and/ or motivational processes (impulsivity)⁸ that affect inhibitory control performance differently in ND compared to CG

DISCUSSION

- Nicotine deprivation and craving may further enhance positive valuation, attentional focus and impulsive reactions towards smoking- related cues in ND
- This could explain why patients show failures of inhibitory control performance in substance-related contexts (lapse or relapse) even if general self-control competences have been strengthened with specific interventions

Further research

- Studies may apply task sets that disentangle task-relevant and substancerelated cues in different samples with substance use disorders
- Models of ND may profit from focusing on interactions and connectivity between brain networks in order to understand how cognitive control is moderated by attentional, motivational, and emotional processes¹

1. Goschke, T. (2014). Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: advances, gaps, and needs in current research. International Journal of Methods in Psychiatric Research, 23(S1), 41-57.

LITERATURE

- 2. Robinson, T. E., & Berridge, K. C. (2008). Review. The incentive sensitization theory of addiction: some current issues. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1507), 3137-3146.
- 3. Field, M., & Cox, W. M. (2008). Attentional bias in addictive behaviors: a review of its development, causes, and consequences. Drug and Alcohol Dependence, 97(1-2), 1-20.
- 4. Beck, S. M., Ruge, H., Schindler, C., Burkart, M., Miller, R., Kirschbaum, C., & Goschke, T. (2016). Effects of Ginkgo biloba extract EGb 761® on cognitive control functions, mental activity of the prefrontal cortex and stress reactivity [...] Human Psychopharmacology: Clinical and Experimental, 31(3), 227-242.
- 5. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1998). International affective picture system (IAPS): technical manual and affective ratings. Gainsville, FL: University of Florida Center for Research in Psychophysiology.
- 6. Chiew, K. S., & Braver, T. S. (2011). Positive affect versus reward: emotional and motivational influences on cognitive control. *Frontiers in Psychology*, 2, 279.
- 7. Harmon-Jones, E., Gable, P., & Price, T. F. (2012). The Influence of Affective States Varying in Motivational Intensity on Cognitive Scope. *Frontiers in Integrative Neuroscience*, 6(73), 1-5.
- 8. Field, M., Santarcangelo, M., Sumnall, H., Goudie, A., & Cole, J. (2006). Delay discounting and the behavioural economics of cigarette purchases in smokers: The effects of nicotine deprivation. Psychopharmacology, 186(2), 255-263.

Anja Kräplin has no potential conflict of interest.

Dr Anja Kräplin

Work group Addictive Behaviors, Risk Analysis and Risk Management Institute of Clinical Psychology and Psychotherapy Technische Universität Dresden Chemnitzer Str. 46, D-01187 Dresden

Phone: +49 (351) 463-39848 Fax: +49 (351) 463-39830 E-Mail: anja.kraeplin@tu-dresden.de Web: http://www.sfb940.de https://tu-dresden.de/mn/psychologie/riskmanagement